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Abstract
Background: Protein covalent binding by reactive metabolites of drugs, chemicals and natural
products can lead to acute cytotoxicity. Recent rapid progress in reactive metabolite target protein
identification has shown that adduction is surprisingly selective and inspired the hope that analysis
of target proteins might reveal protein factors that differentiate target- vs. non-target proteins and
illuminate mechanisms connecting covalent binding to cytotoxicity.

Results: Sorting 171 known reactive metabolite target proteins revealed a number of GO
categories and KEGG pathways to be significantly enriched in targets, but in most cases the classes
were too large, and the "percent coverage" too small, to allow meaningful conclusions about
mechanisms of toxicity. However, a similar analysis of the directlyinteracting partners of 28
common targets of multiple reactive metabolites revealed highly significant enrichments in terms
likely to be highly relevant to cytotoxicity (e.g., MAP kinase pathways, apoptosis, response to
unfolded protein). Machine learning was used to rank the contribution of 211 computed protein
features to determining protein susceptibility to adduction. Protein lysine (but not cysteine)
content and protein instability index (i.e., rate of turnover in vivo) were among the features most
important to determining susceptibility.

Conclusion: As yet there is no good explanation for why some low-abundance proteins become
heavily adducted while some abundant proteins become only lightly adducted in vivo. Analyzing the
directly interacting partners of target proteins appears to yield greater insight into mechanisms of
toxicity than analyzing target proteins per se. The insights provided can readily be formulated as
hypotheses to test in future experimental studies.

Background
More than half a century has passed since the discovery
that reactive electrophilic metabolites derived from xeno-
biotic agents covalently modify endogenous cellular pro-
teins [1,2]. Since then such covalent binding by reactive

metabolites has been strongly correlated with, and is
widely believed to be responsible for, the acute organ-
damaging effects of a wide range of xenobiotic agents
including drugs and natural products [3-5]. Tissue injury
is a complex phenomenon. Most tissues are comprised of
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more than one cell type, and macroscopic tissue injury
often involves various secreted chemical mediators such
as cytokines, tumor necrosis factor, nitric oxide and pro-
inflammatory cells such as leukocytes and macrophages
or Kupffer cells. Thus it is important to note that the same
compounds that can cause organ damage in vivo can also
cause acute cytotoxicity, correlated to protein covalent
binding, in isolated metabolically-competent cells in
vitro.

It has generally been presumed that protein adduction
impairs protein function, leading to disruption of meta-
bolic or signaling pathways, organelle failure, loss of cel-
lular homeostasis, aberrant cell-cell interactions,
macroscopic tissue damage through necrosis and/or
apoptosis, and in the extreme, organ failure and death. We
know that some compounds that give rise to covalently
bound residues do not cause toxicity, i.e., none of their
adducts trigger events leading to cytotoxicity. Likewise
some, perhaps many, of the adducts of toxic compounds
are ineffective at causing toxicity, but some of the adducts
of toxic compounds do trigger events leading to cytotoxic-
ity (and eventually tissue damage and organ injury in
vivo). The challenge is to identify which adduct struc-
ture(s) on which amino acid residue(s) of which pro-
tein(s) are important for toxicity, and the mechanism(s)
by which their appearance triggers toxicity while others do
not.

Despite extensive investigation, the mechanisms by which
covalent binding events trigger cytotoxic outcomes
remain largely unclear [6,7]. A major reason for this gap is
that only recently has it become technically feasible to
identify numbers of individual proteins targeted by xeno-
biotic reactive metabolites. Early target protein identifica-
tions were based on isolating individual adduct-bearing
proteins, one at a time, using traditional protein separa-
tion methods. By 1997, only 28 proteins targeted by xeno-
biotic reactive metabolites had been isolated and
identified, largely by N-terminal sequencing [6]. In 1998,
however, the coupling of 2D gel electrophoresis with mass
spectrometric methods of protein identification literally
revolutionized the field [8]. Since then both the number
of known target proteins and the number of small-mole-
cule adduct-forming xenobiotics studied have increased
nearly ten-fold. To help keep track of this information and
to facilitate its analysis, we recently built the Reactive
Metabolite Target Protein Database (TPDB) [6,9,10]. All
proteins listed in this database came from studies using
live animals or intact living cells.

As the number of known target proteins grew, so did the
hope of elucidating mechanistic pathways connecting
covalent adduction events to the observed cytotoxic out-
comes. For example, we and others [7,11-14] have

attempted to make sense of lists of target proteins by arbi-
trarily grouping them into categories according to func-
tion, but this approach has done little to reveal to a
unifying mechanism of toxicity caused by a variety of reac-
tive metabolites [6,7]. Another way to analyze target pro-
teins is to sort them into Gene Ontology (GO) categories
[15] and determine whether any show an over-abundance
of target proteins relative to statistical expectations. Simi-
larly, KEGG biological pathway analysis [16] can identify
metabolic pathways in which target proteins are over-rep-
resented. Such analyses could potentially indicate a func-
tional connection between target protein adduction and
biological consequence in the context of systems biology
[12].

In living cells, proteins interact extensively with other pro-
teins, forming protein-protein interaction (PPI) networks
that sense and respond to the abundance or status of other
network proteins. Since endogenous post-translational
modifications of proteins are well-known to perturb PPI
networks comprising intracellular signaling cascades [17-
20], it is plausible to hypothesize that protein modifica-
tion through adduction by xenobiotic reactive metabo-
lites could constitute an aberrant form of signaling
leading to cytotoxic consequences. Thus, inspection of the
interacting partners of reactive metabolite target proteins
might shed new light on the path from protein adduction
to cytotoxicity.

In addition to the question of how protein adduction
leads to cytotoxicity, it is also of interest to know what fea-
tures of a protein, beyond simple abundance, determine
whether or not it is likely to be a target for reactive metab-
olites. Electrophilic xenobiotic metabolites can be classi-
fied broadly as having acylating or alkylating activity
[6,10]. The former tend to attack lysine side chains, while
the latter tend to attack predominantly cysteine, histidine
and lysine side chains. Despite the commonplace occur-
rence of these side chains in most proteins, it is well estab-
lished that protein adduction in living cells is remarkably
selective, with some abundant proteins experiencing little
adduction while some low-abundance proteins experi-
ence high levels of adduction [7,13]. Nevertheless, the
protein features that determine susceptibility to adduc-
tion are almost completely unknown [21]. Since many
protein features can now be calculated or predicted using
software programs, the analysis of target proteins using
feature selection algorithms could potentially shed light
on this important question [22]. Feature selection algo-
rithms operate differently from conventional statistical
(correlative) studies of individual features considered
independently from each other. Such algorithms can
identify which features among many contribute the most
to determining a complex behavior such as relative sus-
ceptibility to adduction by electrophiles.
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In this paper we report our efforts to use bioinformatics
approaches to elucidate the interactions between reactive
metabolites, their cellular target proteins, and the other
proteins that interact directly with the target proteins. In
brief, we first analyzed 171 proteins targeted by reactive
metabolites from one or more of 18 different protoxins
and found that a number of GO categories and KEGG
pathways were significantly enriched with some of these
target proteins. We then selected 28 proteins known to be
adducted by reactive metabolites of at least 3 different
protoxins and found that 21 of them had a total of 165
directly interacting partners. GO and KEGG pathway anal-
ysis of the combined 186 proteins revealed several catego-
ries to be highly significantly enriched by target proteins
and/or their directly interacting partner proteins. Finally,
we applied machine learning methods to analyze the
properties of 62 rat liver proteins targeted by reactive
metabolites of thiobenzamide and 45 rat liver proteins
targeted by reactive metabolites of bromobenzene, in an
effort to identify properties that help to distinguish
whether a protein is likely to be a target of reactive metab-
olites.

Methods
The identities of the target proteins used in this study, and
the structures and names of the protoxins whose metabo-
lites bind to them, are freely available from the reactive
metabolite target protein database [6,9,10]. For the Gene
Ontology and KEGG Pathway analyses we used all 171
proteins listed in the TPDB as of February 2008. For the
protein-protein interaction analysis we used the "rank by
number of hits" function within the TPDB to select the 28
proteins most commonly targeted by different reactive
metabolites. For the machine learning study we used 37
proteins targeted by thiobenzamide metabolites, 20 pro-
teins targeted by bromobenzene metabolites, and 25 pro-
teins targeted by both (82 proteins total). To create a
negative learning dataset, all rat proteins in UniProtKB
[23] were downloaded on May 5, 2008. A software pro-
gram CD-HIT [24] was used to filter redundant sequences
in the dataset at the level of 80% identity. We also elimi-
nated all sequences with lengths less than 40 residues and
subtracted all known target proteins to arrive at a set of
11482 proteins in the negative (non-target) learning data-
set. Although the list of target proteins is incomplete, the
percentage of all proteins in living cells that actually
become detectably adducted by reactive metabolites is rel-
atively small (< 10% based on comparisons of 2D gels vs.
their autoradiograms; [7,13]). Thus the vast majority of
proteins in the negative dataset are considered as non-tar-
get proteins. In addition, the Random Forest algorithm
used to analyze target vs. non-target proteins (see below)
is relatively tolerant of small amounts of "noise" in the
data.

Software programs and databases used in the study
The Gene Ontology project [15] is a collaborative effort to
develop standard vocabularies (ontologies) that describe
gene products in terms of their associated biological proc-
esses, cellular components and molecular functions in a
species-independent manner. The controlled vocabularies
are hierarchically structured (multiple parent levels are
permitted) so that they can be queried at different levels.
KEGG [16] is a widely used database of biological path-
ways. The January 2008 version of the Human Protein
Reference Database (HPRD) was downloaded from the
HPRD website [25]. The binary protein-protein interac-
tions (8919 proteins in 34364 distinct PPIs) were then
imported into Cytoscape, an open source bioinformatics
software platform for visualizing and analyzing biological
interaction networks (http://www.cytoscape.org/). The
Cytoscape plugin BiNGO was used to determine and vis-
ualize statistically overpopulated GO categories in a set of
genes [26].

Random forest models and feature extraction
We used a random forest package [27] implemented in
the "R" environment [28] for this study. Since random
forest models are usually insensitive to the model param-
eters, we used the default parameters. Values for a set of
211 protein features were calculated using various soft-
ware programs or in-house scripts (Table 1). These fea-
tures include protein composition in terms of amino acid
residues, predicted secondary structures, solvent accessi-
bility, and others. Although the predictive model might
have benefited from incorporating elements of protein
three-dimensional structure, such information is not
available for the vast majority of target proteins. Therefore
we used only sequence information and predicted second-
ary structures. Since the sequence of a protein is a major
determinant of its structure, it is expected that features cal-
culated from sequence information alone may be suffi-
cient to distinguish target proteins from other proteins.
Software programs for predicting a broad spectrum of
other protein properties such as secondary structure, sol-
vent exposure, instability index and others are mature and
have found many applications [29,30].

The dipeptide or tripeptide composition of proteins has
been found to correlate to a number of protein properties.
For example, Guruprasad et al. found a correlation
between the dipeptide composition and the stability of
proteins [31]. More recently, tripeptide composition was
applied in a machine learning model to predict protein-
protein interactions [29]. In this study, the 20 amino acids
were sorted into just five groups according to their physi-
cochemical properties: hydrophobic, GAVLIMPFW; polar,
YTSNQ; positive, RKH; negative, DE; the fifth group con-
tained only cysteine because of its unique ability to form
disulfide bonds. Therefore the number of possible tripep-
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tide features according to this classification scheme is
5*5*5 or 125.

Ranking feature importance
The random forest approach offers several methods to
assess the importance of features based on their contribu-
tions to the correctness of the resulting classification.
These methods include i) the mean decrease in accuracy
for each class, ii) the mean decrease in accuracy over all
classes, and iii) the mean decrease in the Gini impurity cri-
terion [32]. In this study we used the mean decease in
accuracy for the minor class (target proteins) because in
previous work we found it to give more accurate results
than other measures for ranking feature importance [22].

Performance evaluation
For imbalanced data (i.e., comparisons of small vs. large
data sets), the overall classification accuracy is not an
appropriate measure of performance because very high
accuracy can be achieved simply by predicting every case
as the majority class (i.e. the control proteins) as opposed
to predicting the minority class (i.e. target proteins). In
this study, we used three indicators of performance: sensi-
tivity, specificity, and area under the curve (AUC) for the
receiver operating characteristic (ROC) curve. We ranked
all cases in the dataset according to the predicted likeli-
hood of positive status and then employed that rank order
to identify correctly classified true positives. We then used
these results to generate an ROC curve (i.e., a plot of the
true positive rate (sensitivity) against the false positive rate
(1 – specificity)). The area under the ROC curve represents
the trade-off between sensitivity and specificity over the

whole range of data. An AUC of 1 represents a perfect pre-
diction model while an AUC ³ 0.9 is considered excellent,
an AUC between 0.8 and 0.9 is considered good, and an
AUC in the range of 0.7–0.8 is fair.

Results and discussion
Bioinformatic analysis of known target proteins
To identify GO terms significantly enriched with target
proteins we used BiNGO [33], a plugin of the Cytoscape
software suite [34], to map target proteins to GO catego-
ries. BiNGO uses a hypergeometric test to search for pre-
dominant categories in terms of p-values and GO
diagrams. For this experiment we used all 171 target pro-
teins in the TPDB (as of January 2008) and found that
163, 159 and 145 of them, respectively, were represented
(by their genes) in the Molecular Function, Biological
Process, and Cellular Component categories of the Gene
Ontology classification system (Tables 2 and Additional
files 3 and 4). A complete listing of terms having a false
discovery rate (FDR) < 1.0E-03 is presented in Additional
file 5, while graphical representations of enriched GO cat-
egories and their hierarchical structures are presented in
Additional files 1 and 2.  

Of the 171 known targets, 115 sort into the broad Molec-
ular Function subcategory of catalytic activity, while only
11 sort into the much more specifically-defined subcate-
gory of antioxidant activity. Nevertheless, both results are
highly significant statistically. Likewise, 125 of the 171
target proteins sort into the broad Biological Process sub-
category of "metabolic process" while only 8 sort into the
subcategory of "xenobiotic metabolic process." Again,

Table 1: Sequence parameters

Protein feature Number of features Calculated with Remarks and references

Amino acid residue composition 40 In-house script Numbers and percentages of 20 amino acid 
residues

Numbers and percentages of positive residues, 
negative residues, all charged residues, net charges

8 In-house script

Sequence length 1
Predicted isoelectric point 1 ProtParam [37]
Number of C/H/N/O/S atoms 5 ProtParam [37]
Instability index 1 ProtParam Predicted based on dipeptide composition 

[37]
Instability class 1 ProtParam Proteins with predicted in vivo half life ³ 40 

hrs considered as stable [37]
Aliphatic index 1 ProtParam [37]
Gravy hydropathy index 1 ProtParam [37]
Predicted percentage of sheet, helix and coil 3 psipred [40]
Predicted percentage of buried/exposed residues 2 Accpro [47]
Predicted disordered regions including length of the 
longest coil, length of all coils, percentage of the 
longest coil, percentage of all coils; and 
corresponding features for rem465 and hotloop

12 disembl [24]

Tripeptide features
(5 * 5 * 5)

125 In-house script
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both of these results are highly significant statistically.
However, the results of sorting target proteins into various
Cellular Component subcategories must be viewed with
some caution for several reasons. First, some target pro-
tein identification studies analyzed whole tissue samples
whereas others analyzed only selected subcellular frac-
tions of tissue homogenates. Second, a majority of the
enzymes associated with bioactivation of xenobiotics to
reactive metabolites are located in the endoplasmic retic-
ulum (microsomal fraction) of the cell. For certain metab-
olites (e.g. trifluoroacetyl chloride formed by P450-
catalyzed oxidation of halothane, CF3CHBrCl), the reac-

tivity of the metabolite may limit its ability to diffuse from
the site of formation to other sites within the cell.

To map target proteins to KEGG pathways we used DAVID
Bioinformatics Resources, an online database for annota-
tion, visualization and integrated discovery developed by
NIAID NIH [35]. We found that of the 171 known target
proteins, 101 are associated with one or more KEGG path-
ways, 15 of which are specifically enriched (p £ 0.001)
compared to statistical expectations (Table 3). Pathways
involved in glycolysis, gluconeogenesis and glutathione
metabolism pathways are among the most enriched.

Table 2: Representative Gene Ontology terms significantly enriched in target proteins.a

GO-ID Category Description Corrected p-value Number of target 
proteins selected

Total number of 
proteins in category

Fraction of population 
as targets

Molecular Function
3824 catalytic activity 1.45E-19 115 5085 0.023
16491 oxidoreductase activity 2.76E-12 40 916 0.044
16209 antioxidant activity 2.93E-09 11 57 0.193
51920 peroxiredoxin activity 9.34E-08 5 6 0.833
16684 oxidoreductase activity, 

acting on peroxide as 
acceptor

5.71E-07 8 40 0.20

4364 glutathione transferase 
activity

3.30E-06 7 34 0.206

9031 thioredoxin peroxidase 
activity

3.30E-06 4 5 0.8

51082 unfolded protein binding 9.02E-05 9 115 0.078
5504 fatty acid binding 9.42E-04 5 37 0.135

Biological Process
19752 carboxylic acid metabolic 

process
1.10E-14 35 524 0.067

6519 amino acid and derivative 
metabolic process

1.02E-08 23 362 0.064

9308 amine metabolic process 1.53E-08 24 414 0.058
6950 response to stress 4.82E-08 36 978 0.0369
6805 xenobiotic metabolic 

process
2.31E-07 8 32 0.25

9410 response to xenobiotic 
stimulus

2.74E-07 8 33 0.242

6979 response to oxidative 
stress

4.38E-07 12 110 0.109

6457 protein folding 1.28E-06 15 207 0.072
Cellular Component

5737 cytoplasm 4.59E-26 108 3936 0.027
44444 cytoplasmic part 3.71E-23 91 2969 0.031
5739 mitochondrion 2.31E-16 41 750 0.055
5788 endoplasmic reticulum 

lumen
4.95E-10 8 20 0.4

5829 cytosol 2.95E-09 25 494 0.051
5783 endoplasmic reticulum 9.68E-09 25 525 0.048
5793 ER-Golgi intermediate 

compartment
2.07E-06 6 23 0.261

5625 soluble fraction 2.56E-06 15 260 0.058

a GO analysis was performed using BinGO in Cytoscape. The rat proteome was used as the background for comparison. A complete listing of 
terms having a false discovery rate (FDR) < 1.0E-03 is presented in Table S3 (see Additional file 5). Also available in the Additional files are graphic 
representations of enriched GO categories and their hierarchical structures (Figures S1 and S2 in Additional files 1 and 2, respectively).
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Analyses such as those presented above are based on the
principles of statistics; thus the observed enrichments of
target proteins in certain GO categories and KEGG path-
ways are a priori significant, at least in the statistical sense.
For example, 115 of the 171 target proteins in the Molec-
ular Function GO category sorted into the catalytic activity
subcategory (which contains 5085 genes overall; Table 2).
Although this result is highly significant statistically (p =
1.45E-19), these 115 targets represent only 2% of all pro-
teins in this broad subcategory. Thus, regardless of its sta-
tistical significance, this finding can at best hint at a
biologically significant mechanistic connection to toxicol-
ogy. In contrast, only 5 of the 171 target proteins sorted
into the peroxiredoxin activity subcategory. This result too
is highly significant statistically (p = 9.43E-08), but since
this entire subcategory contains only 6 proteins, the find-
ing that five of them (83%) are targeted by reactive metab-
olites suggests that perturbation of this Molecular
Function by protein adduction could perhaps be signifi-
cant biologically. A number of other Molecular Function
and Biological Process GO terms that are overpopulated
with target proteins have been individually implicated in
the context of reactive metabolite toxicity (e.g., peroxidase
activity, response to oxidative stress, antioxidant activity,
etc.). Likewise 101 of the171 target proteins (59%) were
also enriched in certain KEGG pathways (Table 3), some
of which (e.g., glycolysis, urea cycle, glutamate metabo-
lism, cysteine metabolism and, not surprisingly, metabo-
lism of xenobiotics by cytochrome P450) have also been
linked to potential mechanisms of chemical cytotoxicity.

Collectively, the highlighting of certain GO terms and
KEGG pathways via the more independent and more
comprehensive bioinformatics approach taken here is
intriguing and encouraging. While findings such as this
can help to formulate or reinforce hypotheses about
mechanisms of reactive metabolite cytotoxicity, each such
hypothesis will need more extensive testing before it can
be taken seriously as a significant contributor to the over-
all mechanism of cytotoxicity. In the end, however, it
must be conceded that the systematic global analyses of
all known target proteins affords only a modest advance
toward elucidation of mechanisms beyond that afforded
by gazing at lists of arbitrarily-grouped target proteins of
single protoxicants [6,7]. To go beyond this limitation, we
searched for and analyzed non-target proteins that inter-
act directly with known target proteins, as described
below.

Bioinformatic analysis of common target proteins and 
their interacting partners
Protein-protein interaction data analysis
From the total set of 171 target proteins in the TPDB we
selected 28 rat or mouse proteins that are common targets
for multiple reactive metabolites (Table 4). Because pub-
lished PPI data for rat and mouse are quite sparse, whereas
extensive PPI data are available for human proteins, we
first found the human orthologs of these 28 rat or mouse
target proteins by searching against human proteins in the
NCBI non-redundant protein database (nr) using the
online NCBI BLAST server. The search results were manu-

Table 3: KEGG pathways significantly enriched in target proteins.a

Pathway Name Corrected p-value Number of target 
proteins selected

Total number of proteins 
in pathway

Fraction of population 
as targets

Glycolysis/Gluconeogenesis 2.96E-08 12 45 0.267
Glutathione metabolism 1.25E-06 9 30 0.300
Carbon fixation 9.92E-06 7 19 0.368
Pyruvate metabolism 1.25E-05 8 29 0.276
Urea cycle and metabolism of 
amino groups

1.38E-05 7 20 0.350

Arginine and proline 
metabolism

5.63E-05 7 25 0.280

Metabolism of xenobiotics by 
cytochrome P450

7.13E-05 9 50 0.180

Limonene and pinene 
degradation

2.70E-04 5 12 0.417

Propanoate metabolism 4.02E-04 6 23 0.261
Glutamate metabolism 4.97E-04 6 24 0.250
Phenylalanine metabolism 6.97E-04 5 15 0.333
3-Chloroacrylic acid 
degradation

7.50E-04 4 7 0.571

Fatty acid metabolism 8.59E-04 7 40 0.175
Nitrogen metabolism 9.09E-04 5 16 0.313
Cysteine metabolism 9.09E-04 5 16 0.313

aPathway mapping was performed using DAVID, and 101 of 171 target proteins could be mapped to one or more KEGG pathways. The subset of 
rat proteins that are allocable to KEGG pathways includes 3396 proteins.
Page 6 of 13
(page number not for citation purposes)



BMC Chemical Biology 2009, 9:5 http://www.biomedcentral.com/1472-6769/9/5
ally inspected and the most significant matches were
selected (see Additional file 3). The minimum and aver-
age percent identity of the target proteins and their human
homologs is 69% and 88%, respectively. The maximum
difference in sequence lengths for these protein pairs is
only 2.3%. Thus, the selected human proteins are very
likely to be orthologs of the target proteins. We then
searched for the respective interacting partners of the tar-
get protein orthologs in the Human Protein Reference
Database [25]; this approach is based on the common

assumption that PPIs are conserved across species [36].
We found a total of 165 proteins to be directly interacting
partners to 21 of the 28 target protein orthologs. A full list
of these interacting proteins is available in the Additional
Materials (see Additional file 4).

GO and KEGG pathway analysis of common targets and their 
interacting partners
We used BiNGO to identify GO categories significantly
overpopulated with target proteins or their first interact-

Table 4: Summary of interacting partner analysis for human orthologs of 28 rat or mouse proteins commonly targeted by multiple 
different reactive metabolites a

Entrez id Gene symbol Human Protein name Number of interacting partner proteins found

213 ALB Albumin 12
217 ALDH2 Aldehyde dehydrogenase 2 7
383 ARG1 Arginase 2
761 CA3 Carbonic anhydrase III 3
2023 ENO1 Enolase 1 6
2168 FABP1 Fatty acid binding protein 1 2
2923 PDIA3 Protein disulfide isomerase A3 11
2944 GSTM1 Glutathione S-transferase Mu-1 4
2946 GSTM2 Glutathione S-transferase Mu-2 4
3309 HSPA5 BIP 31
3312 HSPA8 Heat shock 70 kDa protein 8 43
3417 IDH1 Isocitrate dehydrogenase 1 1
5034 P4HB Protein disulfide isomerase 15
5037 PEBP1 Raf kinase inhibitor protein 18
5230 PGK1 Phosphoglycerate kinase 1 4
7170 TPM3 Tropomyosin 3 13
7276 TTR Transthyretin 14
7295 TXN Thioredoxin 10
8991 SELENBP1 Selenium binding protein 1 4
10130 PDIA6 Protein disulfide isomerase P5 2
10961 ERP29 Endoplasmic reticulum protein 29 4
1109 AKR1C4 Aldo keto reductase family 1, member C4 0
1652 DDT D-dopachrome tautomerase 0
2052 EPHX1 Epoxide hydrolase 0
2184 FAH Fumarylacetoacetase 0
2593 GAMT Guanidinoacetate N-methyltransferase 0
10247 HRSP12 Translational inhibitor protein p14.5 0
51733 UPB1 Beta ureidopropionase 0

a No interacting partners were found for 7 of the 28 proteins. See Additional file 5 for full listing of all the interacting partners found.

Table 5: GO categories with an over-representation of target proteins or their interacting partners

GO-ID Category Description Corrected p-value Number of target 
proteins selected

Total number of 
proteins in category

Fraction of population 
as targets

Molecular function
51082 unfolded protein binding 3.26E-09 14 113 0.124

Biological process
6457 protein folding 1.65E-17 28 256 0.109
6915 apoptosis 4.63E-09 30 676 0.044
6986 response to unfolded 

protein
4.63E-09 11 61 0.18

Cellular component
5783 endoplasmic reticulum 2.83E-06 25 669 0.037
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(page number not for citation purposes)



BMC Chemical Biology 2009, 9:5 http://www.biomedcentral.com/1472-6769/9/5
ing partners. Of the 186 target proteins and direct partners
analyzed, 182 link to one or more GO terms. As summa-
rized in Table 5, highly significant enrichment was
observed in the subcategories of protein folding, unfolded
protein binding, response to unfolded protein, and apop-
tosis. In addition to the statistical significance of the sort-
ing results, the fact that adduction affected a relatively
large fraction of the proteins in these categories suggests
that these results may also be biologically significant in
terms of the degree to which important processes involv-
ing these proteins may be impaired or altered by target
protein adduction. Of the 186 target proteins plus part-
ners, we found 96 to be involved in one or more KEGG
pathways, eight of which are significantly overpopulated
compared to statistical expectations (Table 6). Among
them, the MAP kinase signaling pathway had the most sig-
nificant enrichment. This result is particularly intriguing,
since this association was not found when we analyzed
only the reactive metabolite target proteins themselves
without including their interacting partners.

Apparently, looking beyond just target proteins and con-
sidering their first interacting partners may provide a
deeper look into potential mechanisms of cytotoxicity.
The potential indirectness of analyzing human orthologs
of rat and mouse target proteins (necessitated by the pau-
city of information about rat and mouse vs. human PPIs)
was offset by focusing on just 28 proteins known to be tar-
geted by multiple different reactive metabolites. Compar-
ing the results of Table 5 to those of Table 2 shows that the
GO Molecular Function subcategory "unfolded protein
binding" was again highlighted, but this time with much
higher statistical significance (3.3E-09 vs. 9.0E-05) and
much higher fractional coverage of the class (0.124 vs.
0.078). The significance and coverage of the Biological
Process "protein folding" are greatly increased in Table 5
vs. Table 2. In addition, Table 5 also lists two terms having
both high statistical significance and high fractional cov-
erage that are absent from Table 2, namely, "apoptosis"

and "response to unfolded protein," both of which have
high relevance to cytotoxicity.

In terms of KEGG pathway analysis of targets and their
partners (Table 6), the flagging of the MAP kinase path-
way is particularly noteworthy. This finding is consistent
with independent experimental evidence that also
strongly supports a role for this pathway in apoptosis and
other pathological cellular responses to toxic chemicals
[37-40]. There is also considerable interest in the involve-
ment of the immune system in some forms of reactive
metabolite-mediated toxicity in vivo [4,5]. The flagging of
four pathways related to the nervous system was unex-
pected, and will require further analysis to evaluate. Nev-
ertheless, it appears that our approach of considering not
just target proteins but also the proteins with which they
interact in the cell may provide clues to downstream
events important to cytotoxicity and thereby help in eluci-
dating mechanisms of cytotoxicity. Stated another way, it
is perhaps essential PPIs rather than proteins per se that
are the important targets of reactive metabolites in living
cells.

Machine learning approaches to elucidate factors that 
differentiate target from non-target proteins
In addition to identifying the target proteins whose mod-
ification appears to initiate cytotoxic responses, we also
examined them more specifically to elucidate protein fea-
tures that predict susceptibility to reactive metabolites.
Because the reactive metabolites of the 18 protoxins
included in the TPDB span a wide range of chemical reac-
tivity and hydrophobicity, and because for many of them
only a few target proteins are known, we decided to use
the set of 82 proteins that are targeted in vivo by thioben-
zamide metabolites (n = 62), bromobenzene metabolites
(n = 45) or both (n = 25) for this study. Thiobenzamide
forms a reactive acylating metabolite with a very strong
preference for reaction with amine side chains on lysine
[7] or phosphatidyl-ethanolamine (PE) lipids [41]. On

Table 6: KEGG pathways containing target proteins or their interacting partners

Pathway Name Corrected p-value Number of target 
proteins selected

Total number of proteins 
in pathway

Fraction of population as 
targets

MAP kinase signaling 
pathway

4.26E-05 19 259 0.073

Antigen processing and 
presentation

6.66E-05 10 80 0.125

Alzheimer's disease 1.11E-04 6 28 0.214
Long-term potentiation 5.78E-04 8 65 0.123
Neurodegenerative 
disorders

0.0011 6 39 0.154

Long-term depression 0.0018 8 75 0.107
Arginine and proline 
metabolism

0.0018 7 34 0.201

Adipocytokine signaling 
pathway

0.0054 7 73 0.096
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the other hand, prior analyses of proteins adducted by
bromobenzene metabolites indicates a strong preference
for adduction on cysteine sulfhydryls [42,43] as opposed
to lysine or histidine [44] or PE lipids [41]. Thus, one
might expect the composition of the proteins targeted by
these two metabolites to reflect their differing chemical
selectivities to at least some extent.

To investigate this we used the random forest algorithm
developed by Breiman [32]. Random forest is an ensem-
ble approach that combines many individual classifiers to
formulate a robust composite classifier. It is particularly
suitable in classifying high-dimensional and noisy data,
and it can handle a mixture of both categorical and con-
tinuous predictors such as those in Table 1. Each of the
classifiers is built on a bootstrap sample of the data and
utilizes a random subset of the available variables (predic-
tors) without pruning to obtain low-bias trees. The ran-
dom forest algorithm has been applied to a broad range of
classification tasks and has demonstrated superior per-
formance compared to other classification algorithms
[32].

We used five-fold cross validation to estimate the per-
formance of the classification models. In brief, 82 target
proteins and the 11482 rat proteins taken as a negative
control set (see Methods) were randomly split into 5
equal portions. One portion was reserved as a test data set
while the other four were pooled and used as a training
set. A random forest classifier with 10,000 trees was built
using 211 protein features (see Methods section) and the
performance of the model was then evaluated using the
reserved dataset. This process was repeated four times,
each time starting with a different one of the five subsets
of proteins as the test set. The results from all five repeats
were then combined to afford an overall performance esti-
mation.

For our model the ROC curve in Figure 1 has an AUC of
0.857, while the specificity and sensitivity of the model
are 0.710 and 0.784, respectively. Thus this simple model
appears to have fairly good predictive power. The relative
importance of the 211 protein features used in the model
was ranked using the random forest algorithm and the top
15 are displayed in Figure 2. We also estimated the per-
formance of models built using only these top 15 features.
The ROC curve of this truncated model has an AUC of
0.779, somewhat inferior to the AUC of 0.857 for the
model using all features, suggesting, not surprisingly, that
protein targeting by reactive metabolites is a complicated
process that depends on many factors.

Interestingly, the most decisive feature of the full model is
the percentage of lysine in the proteins. This is consistent
with the fact that the reactive iminosulfinic acid metabo-

lite of thiobenzamide reacts preferentially with amine
groups such as those on lysine side chains. Figure 3A
shows a plot of the cumulative distribution of lysine in
thiobenzamide target vs. non-target proteins. This plot
indicates, as might be expected, that lysine residues are
more common among thiobenzamide targets than non-
target proteins, but surprisingly, the same is true for bro-
mobenzene target proteins. Figure 3B shows a similar plot
for the distribution of cysteine among target vs. non-target
proteins. Surprisingly, both sets of target proteins actually
show somewhat lower cysteine content than the non-tar-
get proteins, and again there is no apparent difference
between thiobenzamide vs. bromobenzene targets despite
the extremely different chemical reactivities of their
respective reactive metabolites toward specific protein
nucleophiles. Consistent with the results of Figure 3B, Fig-
ure 2 also indicates that cysteine content is a relatively
unimportant factor for distinguishing target from non-tar-
get proteins in vivo, at least for reactive metabolites of
bromobenzene and thiobenzamide.

Dennehy et al. investigated the reaction of two model
cysteine-reactive electrophiles (IAB, a cytotoxic iodoaceta-
mide derivative, and BMCC, a reactive but non-cytotoxic
maleimide derivative) with proteins from the nuclear and
cytosolic fractions of HEK293 cells [21]. They found that
89% and 85%, respectively, of 539 proteins that became
adducted were selectively adducted at only one or two
cysteines per protein. The overlap of target proteins hit by
IAB vs. BMCC is only about 20%. In an attempt to explain
this selectivity they analyzed the frequency of occurrence
of lysine, arginine, histidine or a second cysteine within
the first five residues on either side of the adducted
cysteine. Some differences in the frequencies were noted
for target vs. non-target proteins, but unfortunately, the
most likely reasons for the selective reactivity of only a few
cysteines among many, namely, protection by intramo-
lecular disulfide formation and/or steric occlusion within
the protein, could not adequately be evaluated because
such structural information is generally not available for a
majority of proteins. In our analysis of features of target
proteins we used only two large sets of targets, one from a
lysine-selective metabolite and one from a cysteine-selec-
tive metabolite. The comparative unimportance of
cysteine (vs. lysine) in differentiating target proteins from
non-target proteins probably indicates that while a given
reactive metabolite may require a specific type of target
nucleophile, the target site is only one factor, and a possi-
bly not a sufficient factor overall, for differentiating target
from non-target proteins.

The second most important feature of target proteins is
the percentage of aspartic acid. Aspartic acid residues are
generally not considered to be nucleophilic target sites for
most reactive electrophilic metabolites. It is possible that
Page 9 of 13
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the higher content of aspartic acid provides negative
charges to balance the positive charges resulting from a
higher percentage of lysine in target proteins; however,
the equally negatively charged glutamic acid did not play
a significant role in distinguishing target proteins (Figure
2). Moreover, we find that the correlation between the
content of lysine vs. aspartic or glutamic acid in the non-
target set is insignificant (0.183 and 0.363 respectively),
in agreement with the wide range of pI values that pro-
teins span. Clearly more work will be required to under-
stand why some abundant proteins receive little
adduction while some low-abundance proteins become
more heavily adducted by a given reactive metabolite.

The third most important feature of target proteins is their
predicted index of instability (with respect to physiologi-
cal degradation and turnover). If we consider proteins
with a calculated instability index ³ 40 as unstable, and
those with an index < 40 as stable [31], then 57 out of the
82 target proteins (70%) are classified as stable while only
26% of the proteins in the negative learning set (i.e., 2970
out of 11482) are classified as stable (Fisher exact test p =
2.26E-16). The relative instability of a covalent metabo-
lite-protein adduct can arise from 1) chemical instability
of the covalent linkage, 2) a high intrinsic rate of turnover
of the protein itself, or 3) an enhancement of protein turn-
over induced by adduction. A priori, the stability of a pro-
tein can influence both the detection and analysis of its
adducted forms and the cellular consequences of its
adduction (e.g. cytotoxicity). Surveys of target proteins are
usually conducted at just a single time after dosing, cho-
sen to maximize the total amount of covalent binding.

Proteins whose turnover is rapid relative to the endpoint
time will thus experience a lower exposure to reactive
metabolite and a greater likelihood of removal by degra-
dation, resulting in a lower apparent rate of adduction
compared to proteins that turnover slowly. If adduction
flags a protein for accelerated destruction, the result will
be the same. This may be one reason that adduct densities
vary so widely across a target proteome (for example, see
[13]). If adduct density is lowered sufficiently (to the edge
of detectability by phosphorinaging, for example), the
protein may then be missed altogether as a target. On the
other hand, since a relatively high proportion of target
proteins turn over less rapidly than non-target proteins,
their adduction may result in a more persistent perturba-
tion to endogenous PPIs and signaling mechanisms and
may therefore contribute more to cytotoxicity.

Interestingly, Lin et al. [45] recently found a major differ-
ence between IAB and BMCC in terms of adduct stability
in vivo (as monitored by Western blotting of cell extracts).
Both agents form covalent adducts that do not dissociate
chemically or in cell-free fractions, but in living cells, the
extent of protein adduction by IAB increases continuously
over 6 hours, whereas adducts formed by BMCC peak at
around 20 minutes after exposure and diminish rapidly
thereafter. Their disappearance is strongly retarded at 4°C,
suggesting that the disappearance may be enzyme medi-
ated. Two other acetamide/maleimide pairs showed simi-
lar differences in protein adduct stability. Lin et al. noted
that the rapid clearance of maleimide adducts coincided
with their relative lack of toxicity and suggested that pro-
tein adduct stability is a critical requirement for the induc-
tion of cellular responses. Their observation of declining
adduct levels over time can be explained by reversal of the
adduction process, and/or by the degradation of protein
molecules bearing adducts. Further work will clearly be
required to address these possibilities, but it is encourag-
ing that results of both bioinformatic and laboratory anal-
ysis of target proteins are pointing in the same direction
with respect to the role(s) and importance of protein turn-
over and adduct persistence in eliciting cytotoxicity.

Conclusion
The covalent binding of reactive metabolites to cellular
proteins has long been associated with the production of
acutely cytotoxic effects. The past several years have wit-
nessed much progress toward identifying their reactive
metabolites and the specific intracellular proteins that
become adducted, often highly selectively, by reactive
metabolites from a number of different protoxicants. For
the better-studied protoxicants, much is known about the
structures and reactivities of their reactive metabolite(s),
the structures of the adducts they form on proteins, and
the identities of many of their protein targets [6]. For tech-
nical reasons it has proven challenging to elucidate which

ROC curve using the false-positive rate and true positive rate to evaluate the performance of the model to predict target proteinsFigure 1
ROC curve using the false-positive rate and true pos-
itive rate to evaluate the performance of the model 
to predict target proteins. The area under the curve is 
0.857.
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specific residues on a given target protein become modi-
fied [46], but progress is being made in this area as well
[7].

The challenge has been to use the available information to
discover factors that govern the selectivity of adduction
(both among and within different proteins), and to dis-
cover mechanisms that link protein adduction to cytotox-
icity. As of this writing, the TPDB lists 32 compounds
whose reactive metabolites present widely varying chemi-
cal reactivities and hydrophobicities, and a total of 268
proteins that are modified by reactive in animals or living
cells in vitro [9]. However, for only 9 of these 32 com-
pounds, one of which is not cytotoxic, are 15 or more tar-
get proteins known, while for 19 other compounds fewer
than 7 target proteins are known. Thus, considering the
breadth of the phenomenon, the descriptive data are still
rather sparse. Little commonality of targets among differ-
ent protoxins is apparent, and analyses of target proteins
per se have failed to illuminate mechanisms linking cova-
lent binding to toxic outcomes.

Because proteins in cells interact specifically and exten-
sively with other proteins, we hypothesized that xenobi-
otic adduction might disrupt endogenous PPIs and

signaling pathways vital to cellular homeostasis and sur-
vival. In the current work we found that the human
orthologs of 21 common rat or mouse target proteins
have 165 direct-interacting partners that participate in a
total of 529 PPIs. These 186 proteins are significantly con-
centrated in several GO categories and KEGG pathways
that experimental studies by others have shown to be
highly relevant to cell signaling and cell survival. This sug-
gests that compared to direct analysis of target proteins,
further bioinformatic analysis of proteins that interact
with greater numbers of target proteins may be able to
point toward more fruitful areas for generating and testing
hypotheses about mechanisms of toxicity.

Finaly, given the chemical and structural diversity of cellu-
lar proteins, it seems unlikely that simple principles of
chemical reactivity will in themselves play an important
role in differentiating target from non-target proteins. As
shown by studies with bromophenol, m-hydroxyacetani-
lide, and mycophenolic acid, not all protein adduction
has toxic concequences. It seems equally likely that
among adducts generated from toxic compounds, only
some but not all will have toxic consequences. It will take
time and much more detailed information about protein
adduction in living cells to sort this out, and the outcome

Relative importance of the top 15 features as ranked by the random forest algorithmFigure 2
Relative importance of the top 15 features as ranked by the random forest algorithm.
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is likely to point to a number of mechanistic paths from
protein modification to cellular impairment or death. In
the meantime, one aspect of adduct chemistry that exper-
iments and bioinformatic analysis both suggest may be
important is the persistence of the adducted protein in the
cell. Unstable adducts that dissociate, and adducted pro-
teins that turnover rapidly, may be less effective at per-
turbing cellular homeostasis and injuring the cell than
more durable adducts.
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